BOJANGLES II - A SYSTEM FOR THE DESCRIPTIONAND ANALYSIS OF BODY MOV MIETMS
by SANFORD P. RESSLER(EENRY RUTGERS SCHOLAR, 1977-1978)
A thesis submitted to
Futgers College
in partial fulfillment of the requirements for the decree of Bachelor of Arts
Written under the direction of
Professor Fhilip Orenstein
of the Department of Art
New Brunswick, New Jersey
April 1978

Table of Contents

Abstract 3
Notation 4
Manual 11
Creativity 42
Structured Interaction 45
Randomess 47
Future 52
Appendix of Procrans.. 62

Abstract

The application of computer technology to problems in the arts is a relatively unexplored area. This project is concerned with the use of computers in the field of dance notation as well as the use of computers for the conceptualization of movements. A computer based dance notation system will be more useful than any of the existing notation systems because it is based on an animated figure, rather than a symbolic system. The method of controlling this figure is one of the major goals of this project. A system must be developed which is useful to the choreographer and compatible with present computer technology.

This same notation system can be used to aid in the design of movement for choreography and animation. The way one approaches choreography and various kinds of movements can be aided by the analytical power of a computer. New kinds of movements can be explored which would be hard to visualize'without the aid of a computer.

Notation

What is dance notation and why is there any need for it? A dance notation is a system or technique for recording either on paper, film, $\forall i d e o$ or computer the motion of dancer(s). Pusical notation is used to record and compose sounds visually in the same way a dance notation system is used to compose and record movement. A dance notation system enables the dancer or choreographer to read and reconstruct a dance or movement.

There are presently several notation systems in use, the main ones are the Labanotation, Sutton and Benesh systems. The practice of videotaping dance is also becoming very popular for recording dances. The primary one used today is Labanotation, invented by Fudolph Laban in 1930. It works by using a system of symbols and a chart which represents motion of the various body parts. (sse illus. 1) It takes a highly trained person to notate a dance with this system. It also takes a trained person to read the notations and translate them into motion.

There are hundreds of different symbols in Labanotation, each one representing a specific movement or body part. The complexity of a fully notated score is quite unreadable to an untrained person. Although the symbols are orcenized into a

logical framework, Labanotation is just too complicatad for most dancers and choreographers. Dancers simply do not want to go through the effort of leaming the notation system even though there is a strong push on the part of the (2) Dance Notation Bureau to achieve Labanotation Iiteracy. Many dancers, choreographers and people involved in dance feel that a more direct and less symbolic notation system is necessary. Such a system would show the movement in a dynamic manner. Existing notation systems lack the capability of expressing the quality of movement. What is needed is a simple visual notation system which can express accurately the complexity and quality of movement.

Video taping is an example of a more direct system of recording movement. Due to its accessibility and ease of handling taping is becoming very popular, as a recording tool. At the present time, video taping is invaluable, because it shows movement and it is the most practical recording device around. It is used to teach dancers movements when they must learn a new dance. However, videotape as a form of notation has some significant inadequacies. One can not record a dance which does not yet exist. This makes video impossible to use as a tool to aid the creative process which should be a function of a notation system. Even video is to be used as a device solely for recording purposes it would reguire a great deal of production work
in order to adequately record the movement. Several viewpoints would be very desirable as well as adequate lighting, equipment and technicians necessary to do a high quality recording. Once the recording is finished it is fixed and can not be altered, it is totally inflexible. Analyzing a movement in the detail sometimes desired can be very difficult With video, because the means of getting closeups and slow motion is very limited. Also using a dancer to analyze the movement can be difficult due to the complexity of that persons individual stjle.

The system I am developing makes use of computer technology because I feel that this technology can solve problems of dance notation as well as give the artist a creative tool. (See section on creativity) Computers have been used for some time to aid people in dealing with complex problems, usually scientific or business. More recently the artist has been getting involved in using the computer to help deal with complex problems in the arts. This project is one example of how computers can and will be used to aid artists in their creative works.

A major goal for this particular project is to show that a computer can be used as a conceptual tool for people involved in any kind of movement work and that a computer based notation system would be more flexible and practieal
than existing notation systems.

The idea of using computers for dance is not totally new. Amimations were produced at Bell Labs in 1966 consisting of tiny stick figures moving on random paths. They looked like skaters in a rink. It was not a very elaborate description of movement, but showed some of the possibilities. Recently work has been done by Dr. Steven Smolier for the Dance Notation Bureau. With Maxine Brown he has developed a computer graphics editor for Labanotation which allows a notator to manipulate the symbols on a graphics (4) terminal. He is also working on a way to control a stick figure $\nabla i a$ Labanotation and this aspect of his work seems very interesting, although not yet completed.

Another person doing related work is Gideon Ariel in Aminerst, Mass. He uses a computer to analyze the movements of athletes and to predict chenges in performance based on (6) changes of movement. At Penn State Peter Cavanough is using computers to study human stride patterns and in sweden Ingvar Fredrickson has used computers for ten years to study motion pattens of horses. All of this work shows that computers are being used in a great variety of ways to deal with problems of motion.

I am presently working with stick figures which can
show the movement in a more analytical way than a symbolic notation system or video. An analysis of a stick figure can be a clearer way of looking at a movement than an analysis of a real person. With a stick figure one is not likely to get overwhelmed by the detailed intricacies of an individual. Fowever, this figure can express a quality of movememt which other notation systems lack. The stick iffure is manipulated and drawn on a Tektronix 4013 terminal by using a system of simple computer commands. These figures are then stored in the computers memory to be recalled when needed. (See Manual section)

Once the figures are in the compuier the fleximility of the computer system can be used. These stick figures exist in a computer simulated three dimensional space made Visible on the Tektronix terminal. The figures can be viewed from any angle and distance. The speed of any movement or section of movement can be accurately controlled. Lines can be draw which show the path the body parts travelled in space. The viewpoints can change while the figure is moving. Sections of the figure can be separated so that only parts of the figure can be viewed as it dences. The proportions of the figure can be changed so that a tall and/or short person can be seen dancing the same piece. Every aspect of the figure, timing, and space of the system can be varied to eive the viewer a control which is totally impractical with
any other notation system. This anelysis and recording can be done without ever having someone physically dance. The choreographer can use tho computer as a tool to help visualize and thus clarify ideas.

Menual

The notation system described below was developed on an IBM 370/168 timesharing computer. The programs are all written in APL. All of the major programs are contained in a single workspace. After signing on the computer and loading the correct workspace the system is ready to go.

Now a choreographer can conceive or record a dance using the systom. A person creates a dance by making various positions from the stick figure. One is presented with a stick figure (see illustration 2) and the means to manipulate it. The image may be manipulated by using a variety of commands, most within a control structure, which is the command langrage. This language is only operative when in command mode. To get the command mode just type GO. Now the following commands are available: (see table l)

P: The primary positioning cormend, enables you to pick out a body part (see table 2) and chose a direction to move the body part towards. There are 26 directions and these correspond to the points of a 3 by 3 cube with each cube being one direction. (see illustration 3 and table 3) The center of the 3 by 3 cube is at the active joint.

R: Changes body to inftial default position. (see illustration 2)

V: Places you into viowpoint mode and allows you to change the viewpoint in several ways.

1) Select one of the preset viewoints. Top, bottom, left, right, front or back.
2) Allows you to move the eye relative to where you are by RIGHP, UP, or IT commands.

Il:ustration 2

Illustration 3

SECONDARY

PRIMAPY

D: Displays the active body.
E: Allows you to position the eye according to absolute $x \geqslant z$ cocrdinates.

N: Let's you assign a name to the currently displayed body.

F: Futs you into refining mode. Frompts for a body part and one of the following directions: HIGH LOW LHPN RIGHT FORNARDS BACKNARD
You must type in at least three letters for the above directions. (see table 3)

M: Produces a mirror image of the current body position.
B: Let's you pick another body (previously defined) and allows you to work with it as the active body.

C: Allows you to position the body with cursors.
I: Let's you spin the body around its own axis a specified degrees. (clockwise as viewed from top)

E: Gives you a list of body parts and/or commands.
S: Gets you out of command mode.

```
Following is a typical terminal session:
    (Computer's responses in capitals)
go
    COMMAND:
position
    WHAT IS THE BODY PART YOU WISH TO POSITION?
la
    GHERE DO YOU WANT TO MOVE TO
mP
    (see illustration 4)
    COMmAND:
f (for refine)
    WHAT IS THE BODY PART YOU WISH TO POSITION?
rl
    WHICH DIRECTION
rig
rig (see illustration 5)
rig
    COMMAND:
|iew
    WHICE VIEWFOINT OR MODE T FOR TOF, B BOTTOM, L LEFT,
    R RIGHT, F FRONT, M TO MOVE, S TO STOP.
I
    (see illustration 6)
s (only stops viewing mode)
    COMMAND:
position
    WHAT IS THE BODY FART YOU WANT TO FOSITION?
ra
    WHERE DO YOU WANT TO MOVE?
```


\#: :ustration 4

-

Illustration 5

Illustration 6

hf
(see illustration 7)
COMMAND:
eye
PLEASE GIVE THE COORDINATES FOR THE EYE
$1001000-2000$
COMMAND:
display
(see illustration 8)
COMMAND:
name
WHAT IS THE NAME FOR THIS PRESENT POSITION?
henryl
COMMAND:
b (for body pick)
WHAT BODY DO YOU WANT TO DEAL WITH?
nubl4o
COMMAND:
display
(see illustration 9)
COMMAND:
∇ iew
WHICE VIENFOMHT OR MODE T FOR TOF, B BOITOM, L LEFT,R RIGFT, F FRONT, M TO MOVE, S TO STOP.
f (for refine)
(see illustration 10)
COMMAND:

Illustration \%

Tllustration 8

Illustration 9

Illustrakion 18

positionWHAT BODY PART DO YOU WANT TO FOSITION
arms
WHERE DO YOU WANT TO MOVE?
11
(see illustration 11)
COMTAND:
name
WHAT IS THE NAME FOR THE FRESENT POSITION?
henry?
COMMAND:
mirror
THE MIRROR IMAGE IS NOW CALLED MBOD.
(see illustration 12)
COMMAND:
b (for body pick)
WHAT BODY DO YOU WANT TO DEAL WITH?
mbod
COMIAND:
c (for cursor position)
PLACE THE BODY WITH CURSORS.
(see illustration 13)
COMMAND:
i (for spin)
HON MANY DEGREES?
50
(see illustration 14)
COMTAND:

Illustration 13

Illustration 14

name

WHAT IS THE NAME FOR THE PRESENT POSITION?
henry 3
COMMAND:
stop
We now have three bodies to play with so lots position them on stage somewhere. Imagine the screen as a top view of the stage. You position the bodies by typing:
stage
(Then enter a figure name.)
henryl
(And you use the cursors to pick a point on the stage.)

AGAIN?

J
henry2
(pick the point)
AGAIN?

Y
henry 3
(pick the point)
AGATH?
n
(see illustration 15)
The next step is o create the timing sequence for movements. All movements are transformetions from one position to another within a certain time span. Now we may define a seene. First Jou type:
scone
GTTER TIME SPAN.

01
ENTER TRANSFORMATION.
henryl/henry2
AGAIN?
Ξ
ENTHR TIME SPAN.
1.5

3
ENTER TRANSFORMATION.
henry $2 /$ henry 3
GO TO DISPLAY?
(see illustration 16)
Now all that's left to do is film tho position and then you can see the movement. In order to see any two firures transform you type:
x banima 'henryl/henry 2 '
Where x is any number. It corresponds to frames per seconds as set in the variable fps.

One also has any of the standard eraphic capabilities of the Interart Graphics system available to you. Several animated films have been made which show the figure dancing. One was of the beginning of "Mubian Woman" a dance choreogrophed by John Parks.

Following is a more technical and detailed discussion of some of the fine points involved in the system.

Positioning the body parts with the P comand is accomplished by using a single sphere consisting of 27 points. The sphere is continuously moving around depending

on what body part you are dealing with. The center of the sphere is located at the joint and the radius is oqual to the length of the body part being positioned. Picking a place to move i.e. m ll or 11 picks the corresponding point on the sphere. Moving the body part is actually a trick in that there is really no movement involved. Instead the second point of the body part becomes the designated point of the sphere. This makes for a much faster cpu operation.

A body part such as the left arm is actually three body parts: the left upper arm (Iua), left forearm (lia), and left hand (Ih). When you position the left arm first the upper arm is moved then the forearm then the hand. In this process the body parts become detached and then reattached.

The refine routine (command f) works by figuring out the lines of rotation and correct angle direction to rotate the body part given one of six possible direction (high low Ieft right forwards backmards).

The function SSIZT is used to keep the size of the body constant or to change the body to other proportions. The Variable sizevecl and sizevech are variable which contain lengths for the body parts.

The view point routines are based on the following routines developed largely by Josh Fall.

Given an eye which is treated as a three element vector you have yaw pitch and roll controls. These allow you to rotate about any of the three vectors. One can move the eye by typing UP, where is distance in screon units. The function IN moves the eve towards whatever you are currently looking at. The function RIGHT moves the oye right. The function LOOK points the eye towards tho point specified in the delta acenter variable. For the dance system delta acenter is center stage.

The GROUND function is used to give a sense of gravity. i.e. the figure is not allowed to be off the ground or below it. This can be tumed on or off with the Gswitch, a three element character veriable 'on' or 'off'. It is used primarily in Command mode.
(see illustration 17 for differences)

The BANIMA function is used to "fill in" the positions or movement between the key positions. The body parts do not shrink up as they do with a simple linear interpolation. This is accomplishod by keoping the length of the perts constant. (seo illustrations 18 anc 19 for a comparison) See illustrations 20 and 21 for additional BAMMM axamples.

The ATHAL function lets you analyze the paths which body parts take during a trancfomation. (seo illustrations 22 and 23)

Illusiration $\%$

- 35-

Illustration 18

Illustration :8

2l!ustration 20

ㄹ.: ustraition 21

- 40 -

$$
\text { Illustration } 23
$$

Creativity

Rosalee Goldberg's article "The Art of Notation" shows how many different artist-dancers have turned to notation as a conceptual tool. Many artists have invented their own limited forms of notation either for a single dance or for seversl. Artists such as Trisha Brown, Lucinda Childs, Yronne Rainer, and Steve Paxton have developed their own notations systems to help them work out the problems of a particular piece. Foe example Lucinda Childs began to use notation as a conceptual tool because it became impossible for her to coordinate movements of several dancers simultaneously. "Notation, as a Way of thinking out a piece and of presenting those abstract ideas to other performers", has now become indespensible to her working method.

In his book "Changes" Merce Gunningham predicted the future in 1968 by saying:
> "It seems clear that electronic technology hes given us a new way to look. Dances can be made on computers, pictures can be punched out on them, why not a notation for dance that is inmediately visual? One would havo the image (on a video screen) Next to it on the second screen images in stick-figures that work in depth." (8)

Notation as a conceptual tool is gaining interest among performance artists to script out movements. There is a great need for a notation system and Ms. Goldberg notes.
"Notation as yet has no generel system to express contemporary attitudes. Rather it is made up of a sories of personal systems, which limits their readability to the performers themselves. Many performers feel that the development of a general system is essential. Without such a "thinking tool" a "descriptive tool" and even a "conversational tool" the difficulty in using words to describe masic, dance and live performance remains." (9)

Choreographers will soon be able to have their own computers at home and will be able to put dom ideas quickly in a visual format. Their llate night ideas could then be recorded and expressed much more easily to the performers. A computer at home is not a fantasy. At present there are thousands of people with small microcomputers in their homes and with the prices of computer equipment going down artists owning their own computers is not such a remote possibility.

The computer system is set up to deal with both traditional problems of choreography and notation. It also enables the artist to use the computer as an aid to the creative proeess. As the choreographer is creating the dance with the computer, notation is being made simultaneously. The notation is used as a practical conceptual tool. The relationships of dancers to each other and to the space they are in can be analyzed more carefully than ever before.

Given a relatively small process, a computer program, the information one cen get is phenomenal. Finding a workable process or algorithm is the key to any problem on a
computer, particularly in the arts. One must be very careful that this process is understandable to the computer, and usable for the artist. The fact that the system one designs is the interface between the artist and the machine must constantly be kept in mind. A system which is very efficient for the computer but difficult to use is useless. A fully implemented computerized dance notation system can give the choreographer a tremendous amount of information, which can be used to aid creativity.

When a choreographer teaches a movement to a dancer there is a dialogue between the two. The result is the realization of the choreographer's conception of the dance. In creating a dance on the computer, a dialogue also takes place. This dialogue is betwoen the computer system and the choreographer. There is a significant conceptual difference between these two dialogues. In the choreographerdancer interaction the idea of a dance is directiy transferred from the choreographer's mind to the dancer. In the coreographer-computer dialogue there is an additional step. The idea is first worked out on a computer and is then transferred from the computer to the dancer. This added step enables the choreographer to put down preliminary ideas of a movement into a clear form which can easily be readable at a later time.

Another aspect to the use of a computer as a conceptual tool is that when one is defining these positions one actually has a dialogue with the notation. There is a much more dynomic manner of interaction with a computer notation system than any other type of notation. Having this visual dialogue results in a clarification of ones ideas. In a sense, this system becomes an extension of the choreographer's mind in that it allows one to visualize ideas previ-
ously existing only in the mind.

Once a choreographer gets used to the way the system operates, ideas are stimulated by the way it acts and from its structure. The computer-choreozrapher interaction has a structure which is much more defined then that between a choreographer and a dancer. There exists a structure in the way a choreographer works with a dancer, conscious or unconscious, and the result of a movement idea processed through this structure is a dance which has the style of the choreographer. Then dealing with a system of computer programs this structure is very explicit.

Upon examination it becomes clear that this structure is built upon many substructures. Different combinations of substructures result in different systems to work with. For example motion is dealt with as the transition botween an ordered series of positions. The computer can very easily randomize this order and create a 'rendom dance'. Another example of a reordered substructure is the creation of random figuros. The body is put together from a series of lines which happen to look like a stick figure. It becomes very 'natural' to put a single body together using parts from many different bodies. This concept of combining bodies like parts of a tinker toy set would be very strange, for the conception of movement, if not for a computer based structure.

Randormess

Randomess has been a significant part of art since Arp's and Duchemp's wood cut outs and has been experimented with in a great variety of ways. What is randomess and how can it be used in choreography? Randomess is simply the idea that given a number of possible choices the probability of picking any one is equal to the probability of picking any other.

One way of creating a random dance is to choose a number of possible dance positions. For example, given a library of positions for a dance, (i.e. the positions of "NOBIAN WOMAN"), one could keep picking, at random, from those positions and the resulting order of positions is a random dence. A movement of this particular type would consist of the exact same key positions as the original 'real' dance but they are performed in a random order. Randormess is something which the computer is very well suited to deal with. Many different random aspects are possible. The manner and degree of randomess which you allow into the dance and figure, results in a wide variety of outcomes.

The above described random dence is one method of applying rendomess. Another method is to alter the body parts of a key position random amounts and directions. An-
other possibility would be to let the computer generate the key positions. This too can be done in many ways. The eomputer can generate body positions without any anatomical limitations i.e. every body part has a full sphere of movement possibilities. The limitations of the body can be programed to enable the computer to place the body parts anywhere within that limited range and limit specific body parts to specific ranges but allow random positioning within that range.

Yet another possibility comes from realizing that the computer treats the body merely a collection of lines organized and attached in a specific way. Random positions can also be created by picking subsitute body parts from a library of positions. For example, new position can be created by replacing the left arm of pos27 with the left arm of POS42. The body, used to substitute the parts is picked at random. When this is done for the whole body (all 18 body parts) a random position is generated. (see illustration 24) Rendom positions can be categorized by keeping track of the random number generated by the computer used to create these positions. (see the number in illustration 25) Surely there are many other possibilities and this can only show that randomess is a quality of dance particularly suited to the computer.

Illustration 24

Illustration 25

A great variety of random qualities could be explored and categorized. Without a computer such en in depth exploration into randomess would probably be inconceivable and surely impractical.

At the present stage of development this system can not be considered a practical notation tool. It should be Fiowed as a rather extensive feasability study into the future of computerized dance notation. As a creative tool it can be used now, particularly in the field of rendom dence or for studying the spatial relationships of people (proxemics). By far the primary barrier towards making this system practical and valuable for choreographers is the lack of a real time anination system, refresh graphics. This would allow the user to see the motion on the computar terminal Without having to go through the very arduous task of animation. With such capability the computer's potential as a tool for dance would be realized. I believe that the system, as it stends now, proves thet the computor can be used by choreographers as an extension of their mental processes into a visual format.

The future possibilities for such a system can have far reaching effects in the field of dance, dance notation, and movoment studies. A choreogrepher could have a terminal or Whole microcomputer in the studio and create the figures by twisting some knobs and pushing some buttons. Another way of creating the key positions would be to manipulate a mechnnical model, a manecuin which would send positional information to the computer. Better still the stick figures
could be created in real time by the computer itself analyzing the images from two or three video cameras. The notation would be instantaneous, accurate and very readable.

Another extension of the system would be to define movements and use them as a basis for more complicated actions. For example, if walking is defined as a set of positions with certain distances betweon them one could simply pick two points and have the figure welk between them. The entire set of ballet movements can be defined for example pliet, jete, or arabesque. A ballet could be created by typing all the detailed words...the verbal notation of ballet.

Complete dances could be created with dozens of individually moving figures existing in space. The lighting, as well as the props, could be designed and controlled in full color. A whole theatrical experience could be conceived tested and executed on the computer without ever having to get the dancers, lights, and musicians. All of these variables could be instantaneously synthesized based on the movement of the dancers. This would mean that individualized music and lighting for each performence could be achieved. His computer execution stop could become a brand new ant form in itself, "Computer performence" or "Cybernetic performance" art.

Various movements con be integrated from several different dances, new dances can be created based on a library of movements. With the extension into 3D displays the images produced by the computer would be seen as existing (10)
in your "real" space. The potentials of a computer based dence system are infinite.
I would like to thank Phil Orenstein for all his efforts, thoughts and guidance in this project and art in general. I would also like to thank Richard Barelift whose idea it was to computerize dance notation. Without his help and efforts this project would simply not exist. And of course thanks to all of the hackers for their helpful comments.

Footnotes

1. Hutchinson, Ann, Labanotation, 2nd edition. New York: Theater Arts Books, 1954 .
2. The Dance Notation Bureau is an internetional organization based in New York, devoted to increasing knowledge of Labanotation as well as being involved in movement research.
3. Spencer, Donald, Computers in Society. N.J.: Hayden Inc, 1974 p. 155.
4. Brown and Smolier, "A Graphics Editor for Labanotation", Siggraph Proceedings, Vol 10 No. 2, Summer 1976, p. 60-' 65.
5. Personal Commanication.
6. Moore, K., "Gideon's Masic Machine", Sports Illustrated, Aug 1977, p. 52-60.
7. Goldbers, Rosalee, "The Art of Notation", Studio International, July/August 1976, p. 54-58.
8. Gunningham, Merce, Ghanges, New York: Something Else Press, 1968.
9. Goldberg, p. 54-58.
10. Davis, Douglas, Art and the Future, New York: Praeger, 1973, p. 104

-LS8-L78 '(SL6T)

 - TLST * ouI sAETd

11. Tracey, Martin, A review of Computer Dance, MV, TV/Dance. Dance Research Jml, Fall/Winter, (1975-1976), 40.
12. Iumer, Margery. INew Dance Approaches to Nonliteral Choreography. University of Fittsburgh Fress, 1971.
13. Wein and Bortnyk, M., "Interactive Skeleton Techniques for Enhancing Motion Dynamics in Key Frame Animation", Comminications of ACM, oct, (1976), 564-569.

Table 1

Commands

```
P----position
V----view
S----stop
H----help
E----eye
N----name
F----refine
R----reset
M----mirror
B----body pick
C----cursor position
I----spin
```

Individual Body Parts

```
HE----head
LS----left shoulder
RS----right shoulder
SP----spine
LUA---leIt upper arm
RUA---right upper arm
LFA---left fore am
RPA---right fore arm
LH----Ieft hand
PH----right hand
LHIP--left hip
RHIF--right hip
LT----leItt thigh
RT----right thigh
LC----left calf
RC----right calf
LF----left foot
RF----right foot
```

Body Part Groups

Major Positions
Refining Directions

HF----high forward
HRF---high right forward
HR----high right
HRB---high right backward
HB----high backvard
HIB---high left backward
HL----high left
HIF---high left forward
PH----place high
MF----middle formard
MRP--middle right forward
MR---middle right
MRB---middle right backward
MB----middle backrard
MLB---middle left backnard
ML----middle left
MLF---middle left forward
LF----left forward
LRF---low right formard
LR----IOW right
LRB---low risht backward
LB----Iow backward
LLB---Iow left backward
LI----low left
ILF---low left forward
PL----place low

HIG----high
LOW----IOW
LBF----left
RIG----right
FOR----forward
BAC----baclarard

```
    Appendix
        \nablaAET[D]D
```



```
    Fi&A/\DeltaCT\geq| KーT
\nabla
    \nablaANALCDID
\nabla ANAL,GEFL;SSIgIMD#CNT
[1] CMT&1
[2] AIMN\leftarrow\0
[3] EFL4 0 4 f''
[4] 'WHAT EOIY FAFTS NO TOU WAMT ANALTSEI?'
[5] 'ENTEF; THEM OME AT A TIME FLEASE,'
[6] GETIT:H(O=fTEM&G)/IOIT
[7] EFL&EFL,[1] 4^TEM
[8] ->GETIT
[9] NOIT;INH&(V/EFLOCN.=\EFL)/\1个fEFLOC
[10] Inm&,INmx2
[11] SIt(1^fANI)\div39
[12] GETA;AINW&AIMN,IMI[CNT]+(0,-1$15I) x 39
[13] ->((1\uparrowfEFFL)\geqCNT&CNT+1)/GETA
[14] FIC&AMI[AINL;]
[15] FIC[%1]&1
[16] FxC[1+5Ix-1+\1个fEFL:1]&0
\nabla
    \nablaANGFINIM[D]D
```



```
[1] EAVEC&L1[2; 2 3 4]-L1[1; 2 3 4]
[2] EcVEC\leftarrowL2[2; 2 3 4]-L2[1; 2 3 4]
[3] nIs L1
[4] nISEA&DI
[5] nIS L2
[6] nISEC&nI
[7] ANG4-20((EAVEC+.XECVEC)\div(IISEAXIISEC))
[B] ANG }+360\timesA|G\div2\times0
\nabla
    \nablaA\lIMA[D]D
    \square I AHIMA M;J#ILLSTEMF
        TEMFFG 0 4 个0
[1]
[2] Al\m 0 4 个0
[3] J&O
[4] LFF:DF:AW TEMF-WS TF:AMS M
[5] ->(1\geqJ&S+I)/LF
\nabla
```

```
        \nablaABLIME[口]\nabla
```



```
        IIS LI惊
    F:AT&FAF:M\divII
    <&LIME[1%2]+((LIME[2*2]-LIME[1%2])xFAT)
```



```
    Z&LIME[1;4]+((LINE[2:4]-LIME[1;4])\timesF:AT)
    LエME[2% 2 3 4]f<゙%r゙玉
    F:&LITHE
\nabla
        \nablaAESCALE[D]\nabla
    \nablaF:GFAF:M AESCALEEFIC&SFAC&COUNT多COUNTZAX多%##
        COU\T2&COU\TT&1
        [1]
        [2] GUTS*OLエSI#E*(T/FFC[FCOUNT+1]-L/FIC[FCOUNT+1])
        [3] OLISIEE&((OLISIZE=O), OLISIZEFO))/SMGOLNSIEE
        [4] SFAC&FAFM[COUTT]\divOLISIZE
        [5] ->(EETX,GET'Y,GETE)[COUNT]
        [G] GETM:X&SFAC
        [7] -(3\COUNT&COUNT+1)/GUTS
        [8] GET'T'r&SFAC
    [9] }->(3>\mathrm{ COUNT&COUNT+1)/GUTS
    [10] GETE:Z&SFAC
```



```
    [12] mOIT: (32COUNT2&EOUMT2+1)/%r#
    [13] F&(X,Y,F) SCALE FIC
    [14] }->
    [15] F:EX゙*:**1
[16] ->nOIT
[17] F:Er:r*1
[18] ->IOIT
[19] FEE****1
[20] &NOIT
    \nabla
        \nablaACTIVATOF:[D]\nabla
    \nabla ACTIVATOF:$LIM
[1] ACTLIMM1AFSTACK
[卫] }->(ACTLIM<2)/
[3] GETEOLF:EOIIF* 2 4 ASTACK
[4] STACK&((2-ACTLIM),4)*STACK
[5] 
    \nabla
```

```
    \nablaATTACH[D]D
\nabla ATTACH
    LS\leftarrow(SF[2% 2 3 4]-LS[1% 2 3 4]) MOVE LS
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11] FHIF&(SF[1; 2 3 4]-F:HIF[1; 2 3 4]) MOVE FHIFF
[12] LT&(LHIF[2; 2 3 4]-LT[1; 2 3 4]) MOVE LT
[13] FTH&(F:HIF[2: 2 3 4]-F:T[1; 2 3 4]) MOVE F:T
[14] LC&(LT[2; 2 3 4]-LC[1; 2 3 4]) MOVE LC
[15] FRC&(FT[2; 2 3 4]-FC[1; 2 3 4]) MOVE F:C
[16] LF&(LC[2; 2 3 4]-LF[1; 2 3 4]) MOVE LF
[17] FF&(FC[2; 2 3 4]-FF[1; 2 3 4]) MOVE FF
[18] EOI'T+HE,[1] SF,[1] LS,[1] F:S,[1] LUA,[1] FUA,[1] LFA,[1]
    fiFA,[1] LH,[1] F:H,[1] LHTF,[1] F.HIF,[1] LT,[1] FT,y[1] LC,
    [1] F:C,[1] LF,[1] F:F
[19]
    EONTHLEONT
[20] GFOUME
    \nabla
    | I EAMIMA M多U界多TEMF
    FINUM&O
[1]
[2]
[3]
[4]
    FFS-18
    I&(((З=+/TSWITCH='ON ') ),((3=+/TSWITCH='OFF') ))/(1\divIXFFS)
    *(I)
[5]
[6]
[7]
[8]
[9]
[10] अEXTF:ACT
[11] ->(0LCC\geq40)/IM*
[12] EISFLAT#NF:AN FLOT SSIZE EORY
[13] ANI&A&I,[1] 55I2E EORY
[14] FIUM&FRUMM1
[15] SFLAGK1
[16] }->(1\geq|&J+I)/LF
[17] }->
[18] IMM; 工M 50
[19] ->DISFLAY
\nabla
```

```
        #EONF:OT[D]D
    \nabla EORFROT EON;A;EgC
[1] EONT&EON
[2] 5F&EOnr[3 4 %]
[3] 'HOW MAMY DEGFEES?'
[4] EONT&EONT FOT D,(SF[2% 2 3 4],5F[2%2]:(SF[2#3]-2);5F[
        2;4])
[5] NENTR:ACT
[6] GF:OUF
[7] ATTACH
[8] IN:AW FLOT SSIEE EONT
    \nabla
        \nablaEFICK[口]|
    \nabla EFITCK%T#T1
        'WHAAT EOI'T NO YOU WAINT TO MEAL WITHT'
[1]
[2]
[3] EONTHET
[4] MENTF:ACT
[5] ATTACH
\nabla
        \nablaEFINFUT[D]D
    \nabla EFINFUT#COUNT
        'WHAT IS THE EOITY FAGFT'
[1]
[2] GETEF.HAME:WAME&4TG
[3] COUMT&1
[4] SCAM; }->\mathrm{ (^/MAME=EFHMAMES[COUNT产])/COUNTHOLII
[5] -> ((1\uparrowfEFNAMES) \COUMT&COUNT+1)/SCAM
[6] 'FLEASE F:EENTEF: A EON'T FAAFT'
[7] ->GETEFHAME
[8] COUNTHOLD:CHOLIGCOUNT
    \nabla
        \nablaC[口] 
DEFM EF:F:OF:
        \nablaC
            ^
        #CAT[D]D
    \nabla ミト【 CAT I
[1] \Xi\leftarrow区,[1] Y
    \nabla
```

```
    \nablaCDF:AW[D]#
    # EtCDFAW E
[16] 'THE FIF:ST L IM AMY FOSITIOM IS LOW."
    \nabla
```

DCOMIMFUT［D］
∇ F：ヶCOMIVAFUT
［1］AG：＇COMMAHI：
［2］エクトFーロ
［3］$\rightarrow\left(1 \uparrow I N F={ }^{i} F^{i}\right) / 0, F: \leftarrow F C O M$
［4］$\rightarrow\left(1 \uparrow I M F=: V^{\prime}\right) / 0, F \in V \operatorname{Com}$
［5］$\rightarrow\left(1 \uparrow I M F==^{\prime} F: '\right) / 0, F: \leftarrow F: C O M$
［6］$\rightarrow\left(1 \uparrow\right.$ IMF $\left.=15^{\prime}\right) / 0, F: 45 \mathrm{COM}$

［8］$\rightarrow(1 \uparrow$ I怆＝＇M＇）／0，Fi↔MCOM
［9］$\rightarrow(1 \uparrow I M F=' E \cdot) / 0, F \in E C O M$
［10］$\rightarrow(1 \uparrow I M F=' F ') / 0, F:+F E F I M E$
［11］$\rightarrow\left(1 \uparrow I M F=T^{\prime}\right) / 0, F i \notin T C O M$
［12］$\rightarrow\left(1 \uparrow I M F=1 M^{\prime}\right) / 0, F: \leftarrow M C O M$
［13］$\rightarrow\left(1 \uparrow\right.$ IifF $\left.=1 \mathrm{I}^{\prime}\right) / 0, \mathrm{Fi}+\mathrm{ICOM}$
［14］$\rightarrow\left(1 \uparrow I M F=' E^{\prime}\right) / O, F: \leftarrow E C O M$

［17］＇FLLEASE F：EEMTEF：A COMMANI OF：TTFE HELF
［18］$\rightarrow A G$

```
        \nablaかIS[口]\nabla
    \nabla DIS MATgIg\jTMAT多EMAT
    [1] I&1
    [2] IIV&10
    [3] TMAT&EMAT*O
    [4] GUTS;TMAT&MAT[I;]
    [5] EMAT&MAT[I+1;]
    [6] II&(((TMAT[2]-EMAT[2])*2) +((TMAT[3]-E*AT[3])*2)+((TMATE
    4]-EMAT[4])*2))
    MI&NI*O.5
    NIVGDIV,EI
    ->((1\uparrowfMAT)>I&I+1)/GUTS
    \nabla
    \nablaNISFLATMAFS[D]%
    \nabla NISFLATMAFS AF:G;COUMT
    \triangleZAF
[1]
[2] пTS&口ML 1
[3] ->(AF:G='L')/F:OTIIS
[4] COUMT&1
[5] DISFLAT;DFAW##AFHAMES[COUHT;]
[6] }->\mathrm{ (182COUNT&COUNT +1)/IISFLAT
[7] }->
[8] FOTDIS:COUNT&1
[9] F:NISFLAY;DFAW&MAFTHAMES[COUNT;],' FOOT 4S,LIME'
[10] }->(18\geq\mathrm{ COUMT&COUNT +1)/FIIISFLAT
    \nabla
        \nablaDF:AW[D]D
    | IF:AW OEJ;COUNT
        \squareIO&1
[1] c2] couitT+1
[3] GUTS:OE&OEJ[COUNT: 2 3 4]
[4] OE& 512 390-1000 +ETEO+. X(OE-\triangleVFOINT)
[S] OE&((OE-ETE)\div(OE-ETE)[3]\div-ETE[3])+ETE[1 2],O
[6] APUT CLIFFITMG HERE
[7] AOBN IS MOW <'Y
[8] OEJ[COU\T: 2 3 4] (2个OE):0
[9] ->((1\uparrowfOEJ)\geqCOUNTT+COUNT+1)/GUTS
[10] E O-1 &[OE]
[11] D+\triangleNF:AW
[12] 口*''
\nabla
```

```
        \nablaEIIDF:OT[D]D
```



```
        AT&LDC
        [1]
        [2] TO&FTSS2]
        [3] In<1.
        [4] ENAMFT&AT
        [5] STAF:T: DOWM&SImE*-1
    [6] FOUND; (EXAMFT=CONTAE[IOWNASINE])/OUTFUT
    [7] ->(8\geqSInE&SInE+1)/FOUMD
    [8] SIDE&1
    [9] ->(5\nOWM&nOWit+1)/FOUML
    [10] 'SOMETHING DONE GONE WFOMG IM ENDF:OT:
    [11] OUTFUT:->(In=2)/F:2
    [12] FOTAT&NOWM
    [13] E<AMFT&TO
    [14] In&rn+1
    [15] ->STAF:T
    [16] F:2;F:OTTO&NOWM
    [17] CHECK26
    [18] FOOTANGL(FOTAT-FOOTTO)X-45
    [19] F:OTLINE\leftarrowGFSFHEFE27[FOTCONE[FIIG2%]; 2 3 4]
    \nabla
        \nablaFR:OM[D]\nabla
    \nabla OEONY&FFOOM FOS;SEONTYFARTGF:ESF
[1] TOF:'WHAT IS THE EF.?'
[2] EF&D
[3] SEONT&EONT
[4] EODr*e'FOS'
[5] NENTF:ACT
[6] F-AF:Tt&EF
[7] EONTKSEONT
[8] MEXTF:ACT
[9] EEP,'GFART'
[10] ATTACH
[11] MAFFEF:
[12] OEONY&EODY
[13] 'AGAIM?'
[14] F:ESF&E
[15] ->('Y''=1\uparrowF:ESF)/TOF
\nabla
```

```
        \nablaFILL[口]#
    \nabla MATI FILL MAT2
[1] 'HOW MAHY IHTEFMENIATE FOSITIONS?'
[2] INTHO&D
[3] SMOVEFAC&MOVEFAC&(MAT2[21; 2 3 4]-MAT1[21; 2 3 4])\divINTMO
[4] MOVEFAC
[5] \triangleこAF
[6] पTS&口NL 0.5
[7] DF:AW MATI
[8] MAKEAVEC
[9] FOTEF:
[10] LIF:AW MAT2
    \nabla
        OGETETE[D]D
    \nabla GETETEFTEMF.
[1] 'WHAT AF:E THE X T Z COOF:IIMATES OF THE ETE?'
[2] FET'ESET
[3] TEMF&口
[4] F:IGHT(TEMF[1]-\triangleVFOIMT[1])
[5] UF(TEMF[2]-\triangleVFOIMT[2])
[6] IN(TEMF[3]-\triangleVFOINT[3])
[7] \triangleこAF
[8] LOOK
[9] nF:AW EONT
    \nabla
        \nablaGFOU\*M[D]%
    \nablaGF:OUMB;LOWEF;'TMIF%SW
[1] SW&GSWITCH
[2] }->(1\uparrow1\oplus5W='F')/
[3] +((LOWFF+L/EORT[;3])\not=GLEVEL)/MOVER
[4] }->
[5] MOVEF:'TITF&GLEVEL-LOWEF
[6] EONT&(O,THIF,O) MOVE EORT
    \nabla
```

```
        \nablaGOy口]\nabla
    GO
    [1] 
    [2] [TS4पNL 0.5
    [3] COM; COOMINFUT
    [4] VCOM:SEE
    [5] ->COM
    [c] Scom: +0
    [7] ECOM;GETEYE
    [8] ->COM
    [9] F:EFIME;F:EFIMEF:
    [10] ->COM
    [11] MCOM;DF:AW FLOT MIF:F:OF EONT
    [12] ->COM
    [13] ICOM:EONFOT EONY
    [14] ->COM
    [15] 工COM:TFAMSLATION
    [16] ->COM
    [17] ECOM*EF=ICK
    [18] }->\textrm{COM
    [19] DCOM; IF:AW FLOT SSIEE EONT
    [20] +COM
    [21] F:COM;FESET
    [2こ] ->COM
    [23] HCOM;HELF
    [24] ->COM
    [25] WCOM;'WHAT IS THE MAME FOF: THIS FF:ESEMT FOSITIOM?'
    [26] FOSIMAME&D
    [27] FOSNAME,'&EONT'
    [28] +COM
    [29] TCOM:TWIST
    [30] ->COM
    [31] FCOM;EONYMEM&EOLT
    [32] EFTIMFUT
    [3J] FOSIMFUT
    [34] STACKEF:
    [35] LIM&+/(FOINTEFS[CHOLD;]#0)
    [36] IN&C+1
    [37] ACT:ACTIUATOF:
    [38] ->(ACTLIM<2)/LISFLAY
    [39] F:OTSHIT;MOVSFHEFE
    [40] LOCATOF:
    [41] EONF[2%]+SFHEFE27[FTTO&]
    [42] EOIF[2%1]&1
    [43] LOCATOF:
    [44] EFFMAMES[FOIMTEFSS[CHOLI:%IMC];],'&EONF'
    [45] INC+IMC+1
    [46] ATTACH
    [47] ->ACT
    [48] wISFLA'%GF:OUSID
    [49] \triangleこムF
    [50] पTS4DML 1
    [51] MAFFEF:
    [52] IFFAW SSIEE EORY
    [5J] ->COM
        \nabla
```

```
        \nablaGF:OUF[DID
    | GF:OUF
[1] LA&LUA,[1] LFA,[1] LH
[2] F:A&F:UA,[1] F:FA,[1] F:H
[3] SHOULIEF:5&LS,[1] F:S
[4] UEONtHE,[1] LA,[1] F:A,[1] SF
[5] LL&LT,[1] LC,[1] LF
[6] F:L&F:T,[1] F:C,[1] F:F
[7] HIFS&LHIF,[1] F:HIF
[8] LEON&LLEG,[1] F:LEG,[1] HIFS
[9] FEET&LF,[1] FFF
[10] HimStLH,[1] FiH
[11] F:LA&F:FA,[1] F:H
[12] LLA&LFA,[1] LH
[13] AF:MStLA,[1] FAA
    \nabla
        #HOLI[D]\0
    \nablaHOLN
        \triangleZAF
    [1] \triangleZAF
    [2] पTS*ロロL 1
    [3] U&SIG%
    [4] }->\mathrm{ ('S'=凹)/0
    [5] 1000f[ANV[174]
    [6] ->4
        \nabla
        \nablaIM[口]\\nabla
        | IM N
[1] \triangleVFOIMT&\triangleVFOINT+NXETEO[3&]
    \nabla
        \nablaIHCETE[D]\nabla
    \nabla IMCETE
    [1] ->(<TIME{SFA[[1])V(TIME}SFFA[2]))/0
    [2] MLIIHE&MLINE F:OT INC,F:LINE
    [3] \triangleVFOIMTKMLIME[2% 2 3 4]
    [4] LOOK
    [5] STAMD
        \nabla
```

```
        \nablaIMTF:EFINE[D]\nabla
    \nabla IUTF:EFINE
[1] ATH(2 1 fO), 2 3 FMEMA,MEMIN
[2] DIS AD
[3] DIST1&DI
[4] TESTF+ROLF F:OT ANG,F:LIME
[5] TL2&TESTF[2; 2 3 4],[1] I
[G] TL2*(2 1 f0), 2 3 fTL2
[7] FISS TL2
[8] DIST2+5I
[9] ->(DIST2<nIST1)/COMT
[10] ANG&-AHG
[11] CONT:INC&O
[12] FOF:ACTIVATOF:
[13] DRAW EONFGEODF FOOT ANG,FLLINE
[14] INC+IMC+1
[15] &BPMAMES[FOIMTEFS[CHOLD;INC];],'&EODF'
[16] ATTACH
[17] ->(0<1\uparrowfSTACK)/FOF
[18] +0
    \nabla
    \nablaLIMEFIMI[D]%
    \nabla LINEFINI
    ->((F:ING2=1),(F:IMG2=5),(F:IMG2=2),(F:IMG2=6),(F:IHG2=
    3),(FING2=7),(FING2=4),(F:ING2=8))/L1,L1,L2,L2,L3,L3,L4:
    L1;F:OTLIHE&,SFHEFEE27[8 4 ; 2 3 4]
    ->0
    L2:ROTLINE&,SFHEFEE27[11 14;2 3 4]
    ->0
    L3:F:OTLINE&,SFHEF:E27[17 20;2 3 4]
    ->0
    L4:FOTLIME&,5FHEF:E27[26 23;2 3 4]
    \nabla
        \nablaLDCATOF:[DID
    \nabla Locator:
[1] GFIMDS FFESEMT SFHERE27 LOCATIOM OF EFA
[2] LCOUMT&2
[3] SEAF:CH:H(EONF[2; 2 3 4] AEQ SFHEFEE27[LCOUNT; 2 3
        4])/FOUNS
[4] [CT+1E-13
[5] ->(272LCOUMT&LCOUNT+1)/SEAF:CH
[6] FOUMD;LOC&LCOUNT
[7] ロCT+1E-13
    \nabla
```

```
        \nablaLOOK[口]|
    \square LOOK今久
    [1] <<\triangleACEMTEF:-\triangleVFOINT
[2] }<t(ETEO+.x<)\div(+/N*2)*0.5
[3] }<<-180\times(-10<)\div0
[4] rAW x[1]
[5] FITCH X[2]
\nabla
    \nablaMAKEAVEC[D]D
```



```
    IIST2FMOVEFAC
[1] FSAVEt O 4 FO
［2］
［11］MEMANGVECヶAMGVEC
［12］AMGVEC\＆AMGVECㄴINTMO
［13］cOUMT \(\leftarrow 1\)
［14］ACONE FOF SIGM CHECKING
［15］LOOF：\(\rightarrow\)（OFAMGVEC［COURT］）／DOIT
［16］\(\rightarrow(18 \geq\) COUNT + COUS．\(T+1) /\) LOOF
［17］\(\rightarrow 0\)
［18］moIT：SIMnEM\＆COUATX2

［20］Lᄂ2\＆MAT2［（－1＋5IMLEX），SIMDE×i］
［21］MOVEFAC\＆（LL2［1；2 3 4］－LL1［1\％ ..... 23 47）
［22］LLI世MOVEFAC MOVE LLI
［23］MOVEVEC［COUNT \(]\) KMOVEFAC
［24］TLINEt 24 fLL1［2か］，LL2［2\％］
［25］DIS TLITE
［26］DIET1\＆NI
［27］LL1 FOTL LL2
［28］WLI世LLI F：OT AMGVEC［COUNT］yF：LIME
［29］TLIJ氏E 24 fLL1［2タ］yLL2［2今］
［30］IIS TLIUE
［31］IIST2ヶかI
［32］\(\rightarrow\)（DIST2【以IST1）／EMLTEST
［33］AMGVEC［COUHT］ヶ－ANGVEC［COUNT］
［34］EMFITEST：\(\rightarrow(18 \geq\) COUMT \(\leftarrow\) COUMT +1\() /\) LOOF
```\(\nabla\)
```

```
 \nablaVENTF:ACT[[D]V
 \nabla MENTF:ACT
[1] HE&EONT[1 2 %]
[2] 5F*&EOIT[[3 4 %]
[3] L5&EON'[5 6 %]
[4] F:S&EONT[7 8 %]
[5] LUA&EONr[9 10 i]
[6] FUA&EONT[11 12 %]
[7] LFA&EODY[13 14 F}
[8] FFA&FODT[15 16 %]
[9] LH&EON'T[17 18 %]
[10] FHHEODY[19 20,]
[11] LHTF&EODY[21 22 %]
[12] F:HIFFEONTE23 24 %]
[13] LT&EONT[25 26 %]
[14] FiT&EOR'[27 28 %]
[15] LC&EON'[29 30 %]
[16] RC&EONT[31 32 %]
[17] LF&EONT[[33 34 %]
[18] F:F&EONr[35 36 ;]
 \nabla
OFLOTED]V
```

[2]

```
[2]
[3]
[4]
 \nabla
 \nablaFUT[口]\nabla
 \nabla E&tᄂN FUT ᅳ
```




```
 3]
 \nabla
```

```
 #MOVE[D]%
 \nablaこちL MOVE こ
[1] ᄂ&゙れL
```



```
 3]
 \nabla
 \nablaMOVSFHEF:E[D]D
 | MOVSFHEFEE
[1] rIS EONF
[2] आエ&以エX2
[3] SFHEFEN7+(II,NI,II) AESCALE SFHEF:E27
[4] SFHEFE27H(EONF[1; 2 3 4]-SFHEFE27[1; 2 3 4]) MOVE
 SFHEF:E27
 \nabla
 \nablaMbIS[口]%
 * *nIS LIfLI
 DIST*(((L1[1;2]-L1[2;2])*2)+((L1[1;3]-L1[2;3])*2)+((L1[1;
 4]-L1[2;4])*2))*0.5
 \nabla
 \nabla\IEW[D]D
 \nabla F:&HEN OEJFCOUNT
 \squareIO+1
 COUNT+1
 GUTS;OE&OEJ[COUNT; 2 3 4]
 OE+((OE-EYE)\div(OE-ETE)[3]\div-EYE[3])+EYE[1 2],0
 OEl[COUNT; 2 3 4]&(2个OE).,O
 ->((1\uparrowfOEJ) \geqCOUNT+COUNT+1)/GUTS
 F:&LOEJ
 \nabla
 \nablaIFEEV[D]D
 P FOS1&MFEV FOS2
[1] EOD'Y&OSZ
[2] MEXTF:ACT
[3] EONT&HE CAT SF CAT F:S CAT LS CAT FUA CAT LUA CAT F:FA CAT
 LFA CAT F:H CAT LH CAT F:HIF CAT LHIF CAT F:T CAT LT CAT F:C
 CAT LC CAT F:F CAT LF
[4] NEこTF:ACT
[5] ATTACH
[6] FOSI+EONT
 \nabla
```

```
 \nablaMAF[\square]D
 MAF MAT2#COUHT %COUHT2% IMINEX
```

［1］
［2］
［3］
［5］
［6］
［7］
［8］
［9］ ［10］
［11］

［13］LMEM ROTL LTO
［14］EMAFHAMES［COUNT；$], ' \leftarrow ', M A F M A M E S[C O U M T ;], ' F R T$ ANGVEC［COUI ］，FLITAE：
［15］HENTRACT
［16］MAFAT
［17］$\rightarrow(18 \geq$ COUMT $\&$ COUNT +1$) / \mathrm{CHECKEF}$
［18］nISF：COUMT2 1
［19］IISFLAY；IFFAW\＆MAFMAMES［COUMT2多］
［20］$\rightarrow(18 \geq \operatorname{COUHT} 2 \leftarrow C O U M T 2+1) / D I S F L A T$
$\nabla$

DMAFFER：［D］
$\nabla$ MAFFEF：
EODT゙ 364 个EONT
MEXTF：ACT
MAFSFt 34 fLS［2す］CAT LHIF［1\％］CAT RS［2多］
MAFSF［ $; 1]+1$
MAFSF［1；1］＋0
EODY\＆EOIT CAT MAFSF
$\nabla$
$\nabla$ MIFF：OF：［D］$\nabla$
$\nabla$ SFOStMIFF：OF：FOS
＇MIFFOR IMAGE IS CALLEN MEOD＇
SFOS世FOS［\％1］，（IFOS［\％2］－1024），FOS［； 3 4］
MBORGF：EVEF：SE SFOS
EODT\＆FOS
MEXTFACT
GF：OUF－
ATTACH
$\nabla$

```
 \nablaFOSIMFUT[D]D
 \nablaFOSINFUT;COURT
 [1] GETFOS:'WHEFE NO TOU WANTT TO MOVE?'
 [2] MOVETO&3^D
 [3] COUNT&1
 [4] SEAF:CH; }->(3=(+/MOVETO=MANOF:[COUMT;]))/FOUMIM
 [5] }->(27\geq\mathrm{ COUNT&COUNT +1)/SEAF:CH
 [6] 'FLLEASE FEENTEF: A LOCATIOM'
 [7] ->GETFOS
 [8] FOUMI;FTTO&COUMT
 \nabla
 \nablaF:ANLIFOS[D]\nabla
 \nabla F:AMIDFOS
 [1] \triangleZAF
 [2] SFHEF:E27&5FHEF:E27
 [3] EODT%SEOL'T
 [4] FEEONTEONT
 [5] LIMt?18
 [6] cOUNT&1
 [7] GETEF:INIENG?18
 [8] IHIEN2*?18
 [9] FOINTEF:-1+2XIMLEX
 [10] EONF&EONT[(FOINTEF;FOIMTEF:+1):]
 [11] mIS EOMF
 [12] HI*NIX2
 [13] SFHEFEE27&(II,NI,II) AESCALE SFHEF:E27
 [14] SFHEF:E27&(EONF[1; 2 3 4]-SFHEF:E\7[1%'2 3 4]) MOVE
 SFHEFE27
 [15] FNO<1+?26
 [16] FEOM[(FOINTER+1);]_SFHERE27[COMSTF:AIMTS[INNEX;FMO];]
 [17] +(LIM2COURTT&COUR&T+1)/EETEFF
 [18] HE&FEOR[1 2 %]
 [19] SF&F:EON[3 4 %]
 [20] LS&FEON[5 6 %]
 [21] F:Strimon[7 8 %]
 [22] LUA&FEON[9 10 %]
 [23] FUA&REON[11 12 ;]
 [24] LFA&FEON[13 14 %]
 [25] F:FA&FEOM[15 16 %]
 [26] LH&F:EON[17 18 %]
 [27] FHHF:EON[19 20 %]
 [28] LHIF&F:EON[21 22 %]
 [29] F:HIF&FEOON[23 24 ;]
 [30] LT&F:EOD[25 26 %]
 [31] F:T&F:EON[27 28 %]
 [32] LCtFEOX[29 30 %]
 [33] F:C&FEROL[31 32 %]
 [34] LF&F:EON[33 34 %]
 [35] F:F&F:EOM[35 36, %
 [36] ATTACH
 [37] Eonr[(2x:18) %1]*1
 [38] FFLOT EONY
 [39] FEMD
 [40] FLOTMO&FLOTMOC1
 [41] 'FLOT-'gFLOTHO
```

```
 \nablaF:ESETMAFS[ロ]D
 * FEESETMAFS!GCOUMT
 [1] HEMAF&SHEMAF
 [2] SFMAF&5SFMMAF
 [3] LSMAF*&5LSMAF
 [4] F:SMAF%SFSMAF
 [5] LUAMAF&SLUAMAF
 [6] F:UAMAF*SF:LAMAF-
 [7] LFAMAF&SLFAMAF
 [8] F:FAMAFF&SFFAMAF
 [9] LHMAF&5LHMAF
 [10] FHMAF:+EF:HMAF
 [11] LHIF.MAFF&SLHIF*MAF
 [12] F:HIFMAF&SF:HIFMAF
 [13] F:TMAF&SF:TMAF
 [14] LTMAF&SLTMAF
 [15] F:CMAF+5F:CMAF
 [16] LCMAFFESLCMAF
 [17] F:FMAF-%SFFMAF
 [18] LFMAF&SLFMAF
 \nabla
 \nablaF:EVEF:SE[D]D
```




```
 [1] NEONT& O 4 NO
 [2] Eont%FOS2
 [3] ME<TF:ACT
 [4] NLHIFGFHIF
 [5] NF:HIF&LHIF
 [6] NLSEF:S
 [7] NF:54L5
 [8] iNLUA&FUU
 [9] MFUAGLUA
 [10] MLFA&FFA
 [11] MF:FA&LFA
 [12] TLLH&F:H
 [13] NF:H+LH
 [14] NLT&FT
 [15] NLC&FC
 [16] MLF&FFF
 [17] NF:T<
 [18] MF:C&LC
 [19] MF:F%LF
 [20] MEONT&HE CAT SF CAT NLS CAT HF:S CAT MLUA CAT MFUA CAT
 MLFA CAT MF:FA CAT MLH CAT MF:H CAT MLHIF CAT MFHIF CAT MLT
 CAT MF:T CAT MLC CAT MF:C CAT MLF CAT MF:F
 [21] EONT&NEONT
 [22] MENTF:ACT
 [23] ATTACH
 [24] FOS1世EONT
 \nabla
```

```
 \nablaFinNFOS[D]%
```



```
 [1] VVTOF;FOSMEM&FOSMEM, DF:L
 [2] x<70
 [3] r&50
 [4] VTOF:COUMT&1
 [5] TOF;FOS&2'MUE';+?65
 [G] EF&EFMAMES[EFFOI[COUNT]%]
 [7] SEODY'EON'T
 [8] EOIY&FOS
 [9] HENTFACT
 [10] FAFT\leftarrow&EF
 [11] EONTHSEONT
 [12] MENTF:ACT
 [13] 2EF;'&FAAF:T'
 [14] ATTACH
 [15] MAFFEF:
 [16] ->(172COUMT+COUMT+1)/TOF
 [17] EONT&L 300 50 O FUT 1.5 1.5 1.5 SCALE SSIEE EON'T
 [18] SETSF
```



```
 [20] A F:ITIUM&F:INHUM+1
 [21] EONT[4%1]*0
 \nabla
 \nablaF:ESET[DI]D
 F:ESET
 [1] 'SUFE?'
 [2] 100f[AV[174]
 [3] }->\mathrm{ ('14=1^0)/0
 [4] SFHEFE27+5FHEFES7
 [5] GF:OUF
 [6] HE&SHE
 [7] LS¢SLS
 [8] F:S&SF:5
 [9] LUA&SLUA
 [10] FIUA&SF:UA
 [11] LFA&SLFA
 [12] F:FA&SFFA
 [13] LH+SLH
 [14] F:H*SF:H
 [15] LHIF+SLHIF
 [16] FHIFF+SFHIF
 [17] LT&ミLT
 [18] F:T&5F:T
 [19] LC\leftarrowSLC
 [20] F:C&SF:C
 [21] LF゙世SLF
 [22] F:F&SFF
 [23] SF&S5F
 [24] ATTACH
 [25] MAFFFEF
 [26] \triangleZAF.
 [27] पTS&ロ以L 1
 [28] TF:AW 5SIZE EOIV
 \nabla
 -70 -
```

```
 \nablaF:OTEF:[口]D
```



```
 [1] MEMLZ&MEMLF O 8 FO
 [2] F:LMATt 06f0
 [3] LIMCOUNT&1
 [4] TOF:COUNT&1
 [5] LOOF;->(0%ARGVEC[COUNT])/NOIT
 [6] ->(18\geqCOUMT&COURTT+1)/LOOF
 [7] MOVEFAC&MOVEFAC+SMOVEFAC
 [8] EONT&LEONT&MOVEFAC MOVE EOIT
 [9] MENTF:ACT
 [10] FSAVE&FSAVE CAT EOD'T
 [11] MAFFFER
 [12] DFAW EON'YKLEON'Y
 [13] TEMF&EOLT
 [14] ->(IMTNO)LIMCOUNT LLIMCOUNT + 1)/TOF
 [15] }->
 [16] NOIT:INDEN+2XCOUNT
 [17] L1&MAT1[(-1+IMNEX), IMDEX;]
 [18] L2世MAT2[(-1+IMnEX),IHNEX;]
 [19] L2&(L1[1; 2 3 4]-L2[1; 2 3 4]) mOVE L2
 [20] L1 F:OTL L2
 [21] mIS L1
 [22] L1&LI FOOT AHGVEC[COUNT],FRLIME
 [2J] L1+5I AELIME L1
 [24] F:LMATHF:LMAT CAT F:LIME
 [25] MAT1[(-1+IHNEK),IMNEX#]&L1
 [26] EONTYMAT1
 [27] NE<TF:ACT
 [28] ATTACH
 [29] MAT1&EONT
 [30] }->(182\mathrm{ COUMT&COUNT +1)/LOOF
 -[31] MOVEFAC&MOVEFAC+SMOVEFAC
 [32] 'MOVEFAC-'; MOVEFAC夕'LIIM-';LIMCOUNT
 [33] EONTGMOVEFAC MOVE EONT
 [34] 'MOVED EOII' DOWN HEFEE'
 [35] NEXTF:ACT
 [36] MAFFEF:.
 [37] FSAVE&FSAVE CAT EODY
 [38] [ISFLLAT;DF:AW EONY
 [39] EMINCHECK; (IMTTO)LIMCOUMTGLIMCOUMT +1)/TOF
 \nabla
 \nablaF:TMSET[[D]V
 \square F:THSET S
[1] 13エ\triangleFF:OMFT[\triangleASC\triangleI,S]
 \nabla
```

```
 \nablaFINGINCDID
 \nabla F:IMGII FTS
 FTFF:OM&FTTOFT[FTSS[1]-1;FIING2]
 [2] FTTO&F'TTOFTT[FTS[2]-1;F:ING2]
 FTFF:OM
 FTTO
 \nabla
 \nablaF:OLL[D]\nabla
 \nabla FOLL }
```



```
 . XETEO
 \nabla
 \nablaFOT[\]|
```



```
 [1] ->(1\not=f, ANGFT)/ETF:
 [2] ANGFT&ANGFT,C,C
 [3] nTF:;A&O(1^ANGFT) % 180
 [4] It(0 1 \psiIATA), (1^f!MATA)f1
 [5] IATA&FATA[夕1]
 [6] E[%1]&E[y%1]-AMGFT[2]
 [7] I[%2]tz[%2]-@NGFT[3]
 [8] 2[;3]&E[;3]-{田GFT[4]
 [9] EHIANGFT[5 6 7]-AMGFT[2
 [10] IIF:世E\div(+/E*2)*0.5
 [11] Vt(+/(NIN*2)[2 3])*0.5
```



```
 -5れ1
 [13] E2* 4 4 fY,0,gIF[1], 0 0 1 0 0, (-EIF[1]),0,Y,V5^1
 [14] E:t 4 4 f(20@); (-10日); 0 0 (1 2 0@) 10f-5^1
 [15] E<1,0/V&1\uparrowf\Sigma
```



```
 [17] ->(\underline{v2\Theta4-E+1)/LOOF}
 [18] 료[1]&忐[;1]+@MGFT[2]
 [19] 玉[%2]+玉[%2]+@rGFT[3]
 [20] 玉[%3]tᄅ[%;3]+AMGFT[4]
 [21] ミ\leftarrow&ATA, 0-1 \psiE
 \nabla
 \nablaFOTL[D]%
 VEF: FOOTL EUIDFT多:L
[1] MEMA&A&EMDFT[2% 2 3 4]
[2] MEME&F&VEF:[1: 2 3 4]
[3] MEMS&D&VEF:[2; 2 3 4]
[4] VECEA&A-E
[5] VECEC&TME
[6] <1+VECEA[1]
[7] r1&VECEA[2]
[8] -1&VECEA[3]
[9] <2+VECEC[1]
[10] r'2世VECEC[2]
[11] こ2&VECEC[3]
[12] F:Lf(((r1\times\Sigma2)-(r2xZ1)),((こ1\timesN2)-(こ2\times<1))%((<1\timesT2)-(<2\timesT1)
)
[13] F:LIME&F,(E+F:L)
```

```
 \nablaF:ETESET[D]|
 \nabla F:ETESET
[1] \triangleVFOIMTG 512 390-1000
[2] ErEOf 3 3 F1 0 0 0
 \nabla
 \nablaF:F IAIIEF:[D]\nabla
 \nablaVEF: FFFIMDEF, ENDFT;F:L#E
[1] SIXDIF:GSFHEF:E27[2 6 4 8 17 20 % 2 % 3 4]
[2] MEMA&A&EMIDFT[2% 2 3 4]
[3] MEME+E+VEF:[1; 2 3 4]
[4] MEMN&DH&5I\NIF[[MEMIMNEX;]
[5] VECEA&A-E
[6] VECEC&D-E
[7] K1世VECEA[1]
[8] T1*VECEA[2]
[9] こ1\leftarrowVECEA[3]
[10] <2*VECEC[1]
[11] T2&VECEC[2]
[12] ב2\leftarrowVECEC[3]
```



```
)
[14] FLIME&E,(E+F:L)
 \nabla
 \nablaF:IMGFIMm[D]\nabla
 \nabla FIMGFIMI FOIMTS
[1] FTS&FOOIMTS
[2] Iエ&1
[3] STAF:T:DOWN&SINE&1
[4] FOUND:->(FOINTS[IN]=FTF:IMG[DOWI&SINE])/OUTFUT
[5] ->(5\SIMEt5IIE+1)/FOU|&:
[6] SInE&1
[7] }->\mathrm{ (8\nowi&mowil+1)/FOUMm
[8] 'SOMETHIMG IONE GONE WF:OHG IN FIINGFIMIM
[9] OUTFUT: }->(In=2)/F:
[10] F:IMG1&nOWM
[11] In&Im+1
[12] ->STAF:T
[13] F:2%F:ING?+NOWM
 \nabla
 \nablaFIGGHT[\square]O
 \nabla F:IGHT M
[1] \triangleVFOIMT&\triangleVFOINT+ETEO[1F]XM
 \nabla
```



```
 \nablaSETF.ATH[D]\nabla
 \nabla SETFATH
 [1] 'WHAT IS THE STAF:TIMG AMI EMNING TIME FOF: THE FATH?'
[2] SF\cdotA+D
[3] TIME&SFA[2]-SFA[1]
[4] F:ETESET
[5] SFHEF:E27t 3000 3000 3000 AESCALE SFHEFEE7
[G] SFHEF:E27ち(,\triangleACEMTEF:-,SFHEF:E27[1% 2 3 4]) MOVE SFHEFE27
[7] FOSIMFUT
[8] FOS&FTTO
[9] FOSTNFUT
[10] AMGLE&SFHERE27[(FOS,1,FTTO);]
[11] LIM&ANGLE[1 2 ह] ARGFIMIM AMGLE[2 3 g]
[12] LIM&((LIM=0), (LIM*O))/180,LIM
[13] SFHEFE27[(1,FOS);] F:OTL SFHEFE?7[(1,FTTO)&]
[14] INC&TIME\divFF:S
[15] MLINE&SFHEF:E27[(1,FOS) %]
[16] ANG60
[17] DIS 2 4 f(MLIME[2;],SFHEFE27[FTTO;])
[18] MEMDIS*WI
[19] TLGMLIHE F:OT IHC,F:LIHE
[20] mIS 2 4 f(TL[29],SFHEFE27[FTTO#])
[21] IMC&((MEMNIS>DI), (MEMNIS<II))/IMC,-IMC
 \nabla
 \nablaSETSF[D]D
 \nabla SETSF
[1] MENTF:ACT
[2] EOnF%SF
[3] MOVSFHEF:E
[4] SF[2;]&5FHEFE27[SFVEC[?f5FVEC];]
[5] ATTACH
[6] MAFFEF:
[7] EONr[3&1]*0
[8] MFAW FLOT EONT
 \nabla
 \nablaTOF[CI]Q
 \TOF FIC
[1] FETESET
[2] UF 1000
[3] LDOK
[4] IF:AW F.IC
 \nabla
 \nablaUF[[]]\nabla
 \nabla UF M
[1] \triangleVFOIMT&\triangleVFOIMT+ETEO[2&]XM
 \nabla
```

```
 \nablaSTAGE[D]D
 # STAGEyCHTgST解IM
[1] FOS* 0 10 f':
[2] ST& 0 3 50
[3]
[4]
[5]
[6]
[7] +('r'=1\uparrow⿴)/AG
[8] ST& 1 1 2 SCALE (0,5T) F:OT-90,0000 10000
[9] LIM&1个fFOS
[10] c\\t+1
```



```
[12] ->(LIM\geqCNT+CNT+1)/MOTT
[13] CNT*1
[14] LF:DF:AW,FOS[CMT:]
[15] ->(LIM\geqCMT&CMT+1)/LF
 \nabla
 \nablaSTACKEF:[口]%
\nabla STACKEF:%COURI多IM
 TSTACK&ETACK& 0 4 flO
 cOUNTt+1
 LIM&+/FOOIMTEF:S[CHOLD#]#0
 GETSTACK!TSTACK&E, EFMAMES[FOIMTEF:S[CHOLDG(-1^(COUMTAILIM)
]方]
5] FLHOLI&(-1^(COUNT^1LIM))
[G] JOISTACK&#,JOIMAMES[FOIMTEFS[CHOLN%(-1^(COUBTA\LIM))]#]
[7] STACK&STACK CAT TSTACK
[8] JOISTACK&JOISTACK,[0,5] JOISTACK
[9] ->(LIM\geqCOUNT&COUMT+1)/GETSTACK
[10] EOIFF 2 4 个STACK
\nabla
 \nablaTF:ANS[D]D
```



```
[1] E\leftarrow-1\downarrow(甾\'/')住
```




```
[4] I<1
```



```
[G] ->(M)I+I+1)/LOOF.
\nabla
```

```
 \nablaTF:AMSLATIOU[DD]\nabla
 TF:AHSLATIOM&F:ESF
 [1] 'FLACE THE EOI'T WITH THE CUFSOF:S:
 [2] EOMTGC FUT EONY
 [3] MENTF:ACT
 [4] GF:OUF
 [5] ATTACH
 \nabla
 \nablaVIEW[口]\nabla
 \nabla VIEW ミ
 [1] M&\triangleDF:AW
 [2] 口*''
 \nabla
 \nablaTAW[D]D
 \nablaTAW X
```



```
 180)+.XETEO
 \nabla
 \nablaこOOM[口]\
 \nabla ZOOM FAFIMS#COUINT
 COUNT&1
 [1] (1)
 [2]
 GUTS:LSEFFNAMES[COUNT:],'&FAF:MS SCALEE ESEFNAMES[COUNT%]'
 ->(18\COUMT&COUMT +1)/GUTS
 \nabla
 \nablaCHOF:US[प]\
 O CHOFLSS TEMFFLIM#FMAT!CNT
[1] FMAT& O 20 F''
[2] 'T'FFE IM FOSITIOMS (OHE AT A TIME)'
[3] TOF:TEEMF&D
[4] ->(0=fTEMF)/WISFLAT
[5] TEMF+2OATEMF
[6] FMAT&FMAT,[1] TEMF
[7] ->TOF
[8] IISFLAT;F:ETESET
[9] IN -2000
[10] F:IGHT 1200
[11] CMT&1
[12] LIM&1个fFMAT
[13] TM; EOM*&%FMAT[CMT;]
[14] DF:AW FLOT SSIZE((CMTX2SO),0:(CHTX1)) FUT EOD
[15] }->\mathrm{ (LIM\CHT&CNT+1)/Tm
 \nabla
```

จラSエさE［口］
$\nabla$ FOSIHSSIZE FOSiVEC
［1］ VECヶSIエEVEC1
［2］EONY\＆FOS
［3］ MENTE：ACT
［4］ HE \＆VEC［1］AELITRE HE
［5］ LStVEC［2］AELIME LS
［6］ FStVEC［3］AELITIE ..... F：S
［7］LUA世VEC［4］AELITHE LUA
［8］FUA\＆VEC［5］AELIME FiUA
［9］LFAGVEC［6］AELIME LFA
［10］F：FA↔VEC［7］AELIHE F：FA
［11］LH\＆VEC［8］AELTME LH
［12］F：H\＆VEC［9］AELITHE FHH
［13］F：HIF\＆VEC［10］AELITIE FHIF－
［14］LHIF $+V E C[11]$ AELITIE LHIF
［15］LTGVEC［12］AELIME LTT
［16］FTGVEC［13］AELINE FT
［17］LCtVEC［14］AELIME LC
［18］F：C孔VEC［15］AELIME F：C
［19］LF\＆VEC［16］AELIME LF
［20］F：F\＆VEC［17］AELINE F：F
［21］SF\＆VEC［18］AELITME ..... $5 F$
［22］ATTACH
［23］HEXTF：ACT
［24］MAFFEF：
［25］FOS1世EON＇
$\nabla$
จSTAMII［D］
$\nabla$ TATIL
［1］ FOLL $180 \times(-10 E T E O[192]) \div 01$
$\nabla$
『SWITCH［D］
$\square$ OME SWITCH TWOFTEMF
［1］TEMF\＆OME
［2］ONE\＆TWO
［3］ TWO T TEMF$\nabla$

```
 \nabla\triangleNF:N[口]
```



```
[1] }\triangleNEF+1
[2] }->(6\geqf\<<</LT
[3] \triangleNEF\leftarrow14工星FL[[1+\triangleNEF,-64K]
[4] ->COM,f\゙-6个\
[5] LT7:\triangleNEF&14ICAFRL[1+\DeltaNEF]
[6] COM;13I;\triangleFFOMFT[1+M]
[7] E&-1+CAFLLID
[8] 13x\triangleFF:OMFT[8 8]
\nabla
\nabla\triangleZAF[[]]\nabla
 E&&\triangleZAF
[1] SAFL[288 13]
[2] E*O/ロML 1
\nabla
MAIY OF THE FUFELY GF：AFHIC F：OUTINES WEFE WF：ITTEN EY IAVII TOUFETEKT AND AF：E FAF：T OF THE IMTEF：AFT GF：AFHICS STSTEM．
```

```
 \nabla\triangleCMハ[口]\nabla
 \nabla 玉+\triangleCMX <
```



```
 \nabla
 \nabla\triangleDF:AW[D]\nabla
 \nablaF:&\triangleDF:AW;口IO&C
[1] [IO\leftarrowO
[2] C&E[:O]
[3] 玉七01 \ \
[4] 玉t((fE)f 32 96 32 64)+Et((L\Xi\div32) (321\Xi))[% 1 3 0
 2]
[5] C+ 29 -1[001 10]
```



```
\nabla
```

$\nabla \triangle F C O M[\square] \nabla$
$\nabla$ Eit $\triangle$ FCOM A;EF: IT\#\#E
[1] E $+3 \mathrm{~F} \pm+\mathrm{FO}$ EF: 6999999


[4] $\rightarrow(N E[1] E 012) / E L$
[5] $\quad \underline{\leftarrow} \leftarrow+/(2 \uparrow$ 白 $-F \in 1 \downarrow E) * 2$
[6] $\rightarrow$ (E) EEF: /EL


[9] 2OfCAFL[8]
[10] $E+10$
$\nabla$
$\nabla \Delta F s C[\square] \nabla$
$\nabla$ ご $+\Delta F S C$
[1]
$\nabla$
$\nabla \triangle F$ <MC[D] $\nabla$
$\nabla$ Z $-\triangle$ FNMC
[1]
$\nabla$

```
 \nabla\triangleLINES[DJ\nabla
```



```
 It -3 -3 4Ty,[1] [ATA
 IMCIf(I![2%]-In[1;])\div\triangleHUMLIMES
```



```
 MEW1&(\\triangleIHUMLIMES)0. XIMC1
```




```
 |EW2+MEW2+(fyEW2)f[![2%]
 UEWIATA&LO,5+((2X\triangleIUMLINES),4)f(0,MEW1),1, NEW2
 VTEW IEEWDATA
 IATA&rgTA,[1] \EWMATA
```


## contan

2	2	2	2	2	2	2	2
0	3	15	10	21	16	27	22
8	4	14	11	20	17	26	23
7	5	13	12	19	18	25	24
6	6	6	6	6	6	6	6

MAJOF:
FC
FH
HL
MiL
LL
FL
LF:
MF:
HF
HLF
MLF
LLF
LF:
MF:E
HF:E
HF
in $F$
LF
LE
ME
HE
HE:F
MF:F
LFB:F
1..LI:

ML:
HLE

000000000000000000000000000000000 000000000000000000000000000000000 000000000000000000000000000000000
 000000000000000000000000000000000 $00000000000000000000000000 \mathrm{NTH0000}$
 $00000000000000000000000000 \mathrm{HTHNTH00}$





N	N	17	0	$\stackrel{4}{4}$	＋	8	$\pm$	$\stackrel{4}{4}$	$\stackrel{\square}{8}$		$\infty$	$\stackrel{4}{4}$	N	$\stackrel{4}{4}$	－	4	$\stackrel{4}{4}$
O	d	15	$a$	M	M	M	${ }_{\mathrm{C}}^{\mathrm{M}}$	$\stackrel{\mathrm{M}}{\mathrm{C}}$	$\xrightarrow{M}$	＋	$\infty$	$\stackrel{M}{\mathrm{M}}$	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{\sim}{\mathrm{C}}$	M	${ }_{\mathrm{C}}^{\mathrm{N}}$	$\stackrel{N}{8}$
0	d	15	0	${ }_{8}$	筒．	${ }_{N}^{\text {r }}$	$\xrightarrow{4}$	$\stackrel{+}{4}$	d	＊	$\infty$	N	$\xrightarrow{8}$	N	d	$\xrightarrow{\mathrm{C}}$	${ }^{\text {d }}$
d	a	い	$a$	$\underset{\sim}{0}$	N	$\stackrel{H}{1}$	$\vec{d}$	＋	$\stackrel{+}{4}$	＊	$\infty$	－	＋1	$\stackrel{+}{4}$	$\underset{\sim}{1}$	$\stackrel{N}{n}$	$\xrightarrow{N}$
N	0	13	0	8	O	8	－	8	8	¢	$\infty$	0	O	0	8	$\stackrel{\sim}{n}$	$\stackrel{N}{N}$
N	Cl	（1）	$a$	$\stackrel{a}{\text { a }}$	$\stackrel{\sim}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{\sim}{0}$	$\stackrel{+}{a}$	$\stackrel{\substack{a \\-1 \\ \hline}}{ }$	＊	$\infty$	$\stackrel{a}{a}$	$\stackrel{a}{a}$	$\stackrel{-}{\square}$	$\stackrel{+}{a}$	$\xrightarrow{\mathrm{N}}$	$\xrightarrow{N}$
－	A	＋	$\infty$	$\underset{\sim 1}{\infty}$	$\underset{\sim}{\infty}$	$\stackrel{\infty}{\boldsymbol{\infty}}$	$\xrightarrow{\infty}$	$\underset{\sim}{\infty}$	$\stackrel{\infty}{\text { m }}$	＋	$\infty$	$\underset{\sim}{\infty}$	$\stackrel{\infty}{\text { ¢ }}$	$\infty$	$\infty$	$\stackrel{\text { m }}{\substack{\text {－}}}$	$\stackrel{+}{\square}$
8	al	＋	$\infty$	$\xrightarrow{\sim}$	$\stackrel{+}{+}$	$\stackrel{N}{N}$	$\stackrel{+}{+}$	$\stackrel{\sim}{7}$	$\xrightarrow{\mathrm{N}}$	$\pm$	$\infty$	N	$\stackrel{\sim}{\mathrm{N}}$	$\infty$	$\infty$	$\stackrel{+}{\square}$	$\stackrel{\sim}{\mathrm{N}}$
－	d	$\pm$	$\infty$	$\xrightarrow{0}$	$\stackrel{\square}{-}$	$\xrightarrow{0}$	$\xrightarrow{0}$	$\underset{\sim}{\infty}$	$\xrightarrow{0}$	4	$\infty$	$\xrightarrow{0}$	$\xrightarrow{-}$	$\bigcirc$	$\bigcirc$	$\stackrel{\square}{-1}$	$\xrightarrow{0}$
$\stackrel{\mathrm{M}}{\mathrm{r}}$	N	＋	$\infty$	${ }_{\text {H }}^{10}$	$\stackrel{13}{7}$	$\xrightarrow{17}$	$\stackrel{17}{\square}$	$\stackrel{n}{\sim}$	$\stackrel{4}{4}$	$\pm$	$\infty$	$\stackrel{17}{\sim}$	$\xrightarrow{17}$	$\xrightarrow{10}$	$\stackrel{13}{4}$	$\stackrel{10}{\square}$	$\stackrel{17}{7}$
d	d	＋	$\infty$	$\pm$	$\underset{\sim}{ \pm}$	$\stackrel{+}{+}$	$\stackrel{+}{+}$	$\underset{-1}{\underset{\sim}{2}}$	$\underset{T i}{J}$	$\pm$	$\infty$	$\stackrel{+}{-1}$	$\stackrel{+}{\square}$	$\stackrel{+}{\square}$	$\stackrel{ \pm}{+}$	$\pm$	$\stackrel{\square}{-1}$
$\xrightarrow{19}$	0	＊	$\infty$	$\stackrel{M}{\mathrm{M}}$	$\stackrel{M}{7}$	$\xrightarrow{M}$	$\xrightarrow{M}$	$\underset{\sim}{M}$	$\xrightarrow{M}$	$\pm$	$\infty$	$\xrightarrow{M}$	$\xrightarrow{M}$	$\stackrel{M}{\mathrm{M}}$	$\xrightarrow{M}$	$\stackrel{M}{M}$	$\xrightarrow{M}$
$\pm$	0	＋	$\ldots$	$\stackrel{+}{4}$	$\stackrel{+}{7}$	$\stackrel{8}{-1}$	$\xrightarrow{+}$	$\stackrel{+}{4}$	$\stackrel{+}{4}$	＊	$\infty$	$\stackrel{+}{4}$	$\stackrel{\text { ¢ }}{+}$	$\xrightarrow{\text { r }}$	$\stackrel{9}{9}$	$\xrightarrow{4}$	$\xrightarrow{+1}$
$\stackrel{-1}{-1}$	N	＋	$\infty$	$\stackrel{-1}{-1}$	$\stackrel{-1}{-1}$	$\stackrel{-1}{-1}$	$\stackrel{-1}{-1}$	$\xrightarrow{-1}$	$\stackrel{-1}{-1}$	＋	$\infty$	$\xrightarrow{-1}$	$\xrightarrow{-1}$	$\stackrel{-1}{+}$	$\stackrel{-1}{-1}$	$\stackrel{-1}{\text {－1 }}$	$\xrightarrow{-1}$
$\underset{\rightarrow-}{\circ}$	0	－	$\infty$	$\bigcirc$	$0$	$0$	$0$	$\underset{\sim}{\circ}$	$0$	＋	$\infty$	O	$\bigcirc$	$\underset{\sim}{\circ}$	$\xrightarrow{\circ}$	$\xrightarrow{-1}$	$\bigcirc$
$\stackrel{\text { ¢ }}{\substack{\text { r－}}}$	C	M	N	0	0	$a$	$a$	0	$a$	4	$\infty$	0	0	0	0	0	$a$
－	0	M	$N$	$\infty$	$\infty$	$\infty$	$\infty$	$\infty$	$\infty$	＋	$\infty$	$\infty$	m	$\infty$	$\infty$	$\infty$	$\infty$
$\stackrel{+}{\square}$	0	M	$N$	N	$N$	$N$	N		N	－	$\infty$	$N$	$N$	N	$N$	$N$	
－	0	m	$N$	$\infty$	$\bigcirc$	$\bigcirc$	$\bigcirc$	0	0			$\bigcirc$	$\infty$	$\infty$	$\bigcirc$	$\cdots$	$\bigcirc$
0	N	M	$N$	$m$	$\cdots$	m	$\cdots$	$\cdots$	$\cdots$	＋	$\infty$	$\cdots$	M	$\cdots$	M	$\cdots$	ツ
M	O	M	$N$	0	C	N	N	O	N	＊	$\infty$	0	N	O	0	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{\sim}{-}$


	EFLOC
HE	
SF-	
LS	
F:S	
LUA	
FUUA	
LFA	
HiFA	
L.H	
mH	
LHIF	
F:HIF	
LT	
Fit	
LC	
$m \mathrm{~m}$	
Ler	
$7 \%$	
	EFPVAMES
HE	
SF	
LS	
F: 5	
L.UA	
mUA	
LFA	
FFFA	
LH	
F H	
LHIF	
F:HIF	
LT	
BT	
LC	
FC	
LF	
FiF	
LA	
FiA	
LL	
F:L	
L_LL	
FiLL	
LLA	
F:LA	
UEOT	
LEOD	
LEGS	
AF:MS	
HTFS	
Hides	
FEET	

