
Contributed ArticLes

The Interart Graphics System

Sanford Ressler

The Interart graphics package was
designed for use by artists and other
non-technical people. Ease of use was the
major design consideration. The package is
implemented in APL and is therefore
inherently interactive. Full three-
dimensional representations are supported,
and objects are defined using Cartesian
xyz-coordinates. There is a controllable
"eye" which can be moved around to view the
object from anywhere in space.

From the outset, Interart was designed to
be used by artists. The system was written
by an artist and a computer scientist
working together. Their goal was to
provide naive users with complex graphical
capabilities without sacrificing usability.
A great deal of the usability of Interart
is due to the environment that is provided
by APL; it is highly interactive and well
suited for easy graphic manipulations which
the user can immediately test and play
with. The ability to see some graphical
ideas realized instantly is vital in
getting non-computer people involved with a
computer system. Given relatively few
basic graphical functions, one can combine
the commands in a fairly intuitive manner
to achieve a complicated graphical
operation.

In general use, an object is defined
using a cross-hair cursor, or by combining
previously existing objects which are then
modified via repositioning, scaling, rota-
tion, or any number of functions. The data
are represented as an (N,4)-matrix, the
first column of which is an operation code
(0 for repositioning without drawing; I
for drawing a line) and the remaining three
columns are coordinates° An object can
always be defined explicitly by entering
the coordinates of each of its points.

The space is defined as a Cartesian
coordinate system. In the default eye
position, x increases to the right, y
increases up, and z increases away from the
user. The present graphics screen (a
Tektronix 4013) measures 1024 units in the
x-direction and 780 in the y-direction.

Most Interart commands are of the form:

NOBJ ~ ARGS CMD OBJ

where:

OBJ is a graphic object to be operated on

CMD is an Interart command

ARGS contains the arguments to the
command

NOBJ is the graphic object resulting from
the command.

Constructing and Positioning

Because the results of an action may in
turn be acted upon, commands can be
composed to form powerful command lines.
Following is a description of the major
functions in Interart with examples of
their uses:

PUT creates an object like its right
argument with its lower left forward point
positioned at the point specified
absolutely (in screen coordinates) by its
left argument:

R ~ XYZ PUT OBJ

The result may be saved in a variable (R)
and/or drawn right away, e.g. DRAW 100 100
200 PUT CUBE (see Illustration I

|

MOVE is a relative positioning function:

R ~ XYZ MOVE OBJ

duplicates an object at specified distance
XYZ from the original (see Illustration 2)°

ABSCALE duplicates an object resized to
the exact widths specified in XYZ:

R ~ XYZ ABSCALE OBJ

100 50 500 ABSCALE CUBE will create a cube

APL Quote Quad 11 4 2 June 1981

2

100 units wide, 50 tall, and 500 deep (see
Illustration 3).

3

• 8E

SCALE will duplicate an object changed in
size by the relative factors specified in
XYZ:

R ~ XYZ SCALE OBJ

Thus 2 1 4 SCALE CUBE will double the
width, leave the height the same, and
increase the depth four times (see
Illustration 4).

4

RAND duplicates an object with random
perturbations of its coordinates, within

the range specified by XYZ:

R + XYZ RAND OBJ

(See Illustration 5).

5

in RPN3 CUBE

CAT duplicates two objects, concatenating
them into a single object:

R ~ OBJI CAT OBJ2

The two data matrices are joined into one
with no visual change to the position of
the objects. There will also be a joining
line when the second object begins with
operation code set to "draw".

ROT duplicates an object rotated a
specified number of degrees (D) around an
arbitrary line:

R ~ OBJ ROT D, XYZXYZ

Since a line is defined by two sets of
coordinates, six numbers are required.
There are several predefined lines: LS,
LD, RS, RD, HS, HD, VS, VD. In these
names, L (or R) means that the top point of
a diagonal line is on the left (or right)
side of the screen. H (or V) means
horizontal (or vertical). A line whose
name ends in S is on the surface, a D in
the name means the line is pushed back in
space, while IP is in the plane. All lines
are centered. (See Illustration 6).

6

CUBE ROT '-15,a,IP

¢
U

APL Quote Quad 11 4 3 June 1981

/!ii

~i ̧ ~il

 ilili

~!i, ~ ~i~i~i

i!i ii:il

i!

CURVE d o e s c u r v e f i t t i n g f o r o b j e c t s :

R ~ N CURVE OBJ

5 CURVE OBJ will place five points between
successive pairs of points of OBJ, and the
curve generated passes through successive
pairs of points of OBJ (see Illustration
7).

POLY generates regular polygons of N
sides:

R ~ POLY N

POLY 4 generates a square (see Illustration
8).

i.i i i i _ ~

B

FQ..¥ H POI_Y B

(D
SHADE will generate a hatching and/or

cross-hatching effect within an area on the
sur face :

R ~ ID SHADE OBJ

The object must be two-dimensional (i.e.
all values z are zero). ID is the number
of units between pairs of parallel lines
(spacing) and the angle of the lines, in
degrees. If the angle is omitted, the
default, vertical lines, is used (see
Illustration 9).

TRANS produces transformations from one
object to another:

[3

R ~ N TRANS 'OBJI/OBJ2'

N, a number between 0 and I, is the degree
to which a linear interpolation from OBJI
into OBJ2 should be carried. Thus, 0.5
TRANS 'OBJI/OBJ2' would produce an object
halfway between the two. (See Illustration
I0).

'°

]gJEC

OBJECTi

ANIMA is a repetitive version of the
TRANS function:

R ~ I ANIMA 'OBJI/OBJ2'

It produces all the objects between OBJI
and OBJ2 in increments of I; e.g. 0.1
ANIMA 'OBJI/OBJ2' will draw both objects
and nine intermediate transformations (see
Illustration 11).

CONNECT generates connecting lines
between objects of the same size (same
number of points):

R ~ OBJI CONNECT OBJ2

(See Illustration 12).

CONROT produces continuous rotations of
an object:

CONROT

prompts for all input.

APL Quote Quad 11 4 June 1981

w

I I

12

OBJi C(]R,ECT OBS
OBS

CONMOV causes an object to move
continuously in specified directions:

CONMOV

prompts for all input.

CONPUT does a continuous (multiple) PUT
of the left argument onto each point of the
right argument:

R ~ OBJI CONPUT OBJ2

If the left argument is a square and the
right argument is a circle, then SQUARE
CONPUT CIRCLE would result in a circle,
drawn with squares. Also, the left argu-
ment may be a character matrix containing
the names of several pictures. These
pictures will then be drawn sequentially
onto the points of OBJ2. (See Illustration
13).

SECTIONS duplicates an object with each
line broken into N segments:

R ~ N SECTIONS OBJ

A useful sequence is to combine SECTIONS
with CONPUT. Thus SQUARE CONPUT 5 SECTIONS
SQUARE will draw a square with squares.
Just saying SQUARE CONPUT SQUARE would put
a square only at four corners. (See
Illustration 14).

D 0 ,3

0 D

O D

D D []

I.II Li ..iI M t l I B N t ,
~4

DE
GRID will produce a layout of points on a

grid :

R ~ GRID RCD, RCDS

RCD contains three numbers specifying the
number of rows, columns, and depth for the
grid; RCDS has numbers specifying the row,
column, and depth spacings. If only two
numbers are specified, an evenly spaced,
two-dimensional grid will be produced. The
grid produced by this function is not meant
to be drawn, but rather to be used in
conjunction with CONPUT for placing other
objects onto a grid.

C is a function which activates the cross
hairs:

R ~ C

After adjusting the x- and y-hairs, pushing
the space bar gets you out of cross-hair
mode and returns their xy-position.

Much of the usefulness of the Interart
system derives from the capability of
stringing together commands, allowing a
large number of manipulations to be
specified compactly. For example, a very
useful operation is to use the cross hairs
to reposition an object. By linking
together the cross-hair input function C
with the function PUT, one can manually
relocate an object on the screen:

APL Quote Quad 11 4 5 June 1981

DRAW R ~ C PUT OBJ

then rescale it twice as large:

DRAW 2 2 2 SCALE C PUT OBJ

and rotate it:

DRAW 2 2 2 SCALE C PUT OBJ ROT
45, IP

Viewing Commands

DRAW is the major display function:

DRAW OBJ

actually displays the data in OBJ, an
(N,4)-matrix°

CDRAW creates the character vector which
may be displayed later via quote-quad
output:

R ~ CDRAW OBJ

OBJ is graphical data, but the output of
this function cannot conveniently be
modified at a later time, so is generally
used to store final products. This
character vector takes up much less of
the workspace than storage of the same
picture as a numeric matrix. "Typing
out" R will draw the picture created by
CDRAW.

Another set of functions deals with the
position of the "eye", or "viewpoint", for
the display its coordinates are stored in
the variable VPOINT. The following
functions deal with moving the eye (or
camera) around and pointing it in different
directions. (See Illustrations 15, 16,
17.)

15

#N VIBS] HUM
DEF T

i

, i

V - P I ' Jr I !L.

REYESET resets the eye to default
position. It sets EYEO to be an identity
matrix. EYEO is a (3 3)-transformation
matrix used for perspective calculations.

LOOK points the eye toward the point
specified by ACENTER. ACENTER is a

~6

tOOK

LOOK

three-element vector. Its default value
is 512 390 1000, approximately center
screen.

OBSERVE OBJ points the eye toward the
center of OBJ.

IN N moves the eye N units in the
direction in which it is looking.

RIGHT N moves eye to the right of its
present direction.

UP N moves eye above its present
direction.

TILT N rotates eye N degrees to right
around x-axis.

ROLL N rotates eye around y-axis.

PAN N rotates eye around z-axis.

Direct picture entry

The final component of the system is
FOLLOW, the routine which allows one to use
the cross hairs to draw pictures. The
syntax is:

R ~ FOLLOW

The use of FOLLOW is very similar to the
use of an Etch-a-Sketch (TM) drawing board.

APL Quote Quad 11 4 6 June 1981

You move the cross hairs to a place on the
screen and enter a command character,
followed by a blank. Then move the cross
hairs to a second location and enter
another command. As this process
continues, you construct a picture on the
screen.

The FOLLOW sub-commands described below
consist of one letter each. The commands
are entered one at a time and are separated
by a space.

M Moves the drawing point in pen-up state
to the present cross-hair position.
Generally the first command given.

D Draws a line from the last position
entered to the present one. After
pushing the space bar you may enter a
number which will then be the z-value.
Be careful to enter digits slowly,
waiting for the cursor to space back
after each digit.

L Fills in the triangular space between
the last three points entered with
intersecting "op-art" lines.

F Fits a curve to the last three points.
The straight lines originally through
those points are dropped from the data.
Do a sub-command sequence Z V to see what
has been produced.

C Determines what displayed point is
closest to the cross hairs (for those
with shaky hands).

U Undraws (erases) the last line (in case
you make a mistake). If you type several
U's, you will continue to delete
preceding lines of the object.

Z Clears (zaps) the screen.

V Lets you view what you have so far. It
is generally used after Z.

S Stops picture entry.

evidenced every year by the "art" films
shown at the SIGGRAPH conferences.

Acknowledgments

The Interart system was written by Dave
Touretzky and Sanford Ressler at Rutgers
University while both were undergraduates.
The eye perspective and clipping routines
were written by Josh Hall. The original
system had assistance from Lyn Marantz.

The author would like to acknowledge the
support of the Rutgers Computer Arts Center
and, in particular, Philip Orenstein for
his artistic guidance.

San ford Ressler
Bell Laboratories
600 Mountain Avenue
Murray Hill, New Jersey
USA 07974

References

[I] Newman and Sproul. Principles of
Interactive Computer Graphics, McGraw-
Hill (1973).

[2] Gilman and Rose. APL: An Interactive
Approach, Wiley (19763-7

Conclusion

As part of an art course entitled Art and
the Machine, taught at Rutgers College by
Professor Philip Orenstein, students used
the Interart system to produce a large
variety of artworks. More importantly, art
students who had never seen a computer
before were getting involved with
computing, and learning a great deal in the
process. This system is most certainly not
a state-of-the-art graphic system, or even
extremely sophisticated in its internal
operations. However, it has proved to be
an effective instrument for involving
novices in computing and for making these
users more receptive to the possibilities
of computers in the arts. It is the
involvement of artists in computer graphics
which brings to life the graphic systems

APL Quote Quad 11 4 7 June 1981

